Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bangla-Wave: Improving Bangla Automatic Speech Recognition Utilizing N-gram Language Models (2209.12650v1)

Published 13 Sep 2022 in cs.CL, cs.AI, and eess.AS

Abstract: Although over 300M around the world speak Bangla, scant work has been done in improving Bangla voice-to-text transcription due to Bangla being a low-resource language. However, with the introduction of the Bengali Common Voice 9.0 speech dataset, Automatic Speech Recognition (ASR) models can now be significantly improved. With 399hrs of speech recordings, Bengali Common Voice is the largest and most diversified open-source Bengali speech corpus in the world. In this paper, we outperform the SOTA pretrained Bengali ASR models by finetuning a pretrained wav2vec2 model on the common voice dataset. We also demonstrate how to significantly improve the performance of an ASR model by adding an n-gram LLM as a post-processor. Finally, we do some experiments and hyperparameter tuning to generate a robust Bangla ASR model that is better than the existing ASR models.

Citations (6)

Summary

We haven't generated a summary for this paper yet.