Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Interplay of AI and Digital Twin: Bridging the Gap between Data-Driven and Model-Driven Approaches (2209.12423v2)

Published 26 Sep 2022 in cs.AI

Abstract: The evolution of network virtualization and native AI paradigms have conceptualized the vision of future wireless networks as a comprehensive entity operating in whole over a digital platform, with smart interaction with the physical domain, paving the way for the blooming of the Digital Twin (DT) concept. The recent interest in the DT networks is fueled by the emergence of novel wireless technologies and use-cases, that exacerbate the level of complexity to orchestrate the network and to manage its resources. Driven by AI, the key principle of the DT is to create a virtual twin for the physical entities and network dynamics, where the virtual twin will be leveraged to generate synthetic data and offer an on-demand platform for AI model training. Despite the common understanding that AI is the seed for DT, we anticipate that the DT and AI will be enablers for each other, in a way that overcome their limitations and complement each other benefits. In this article, we dig into the fundamentals of DT, where we reveal the role of DT in unifying model-driven and data-driven approaches, and explore the opportunities offered by DT in order to achieve the optimistic vision of 6G networks. We further unfold the essential role of the theoretical underpinnings in unlocking further opportunities by AI, and hence, we unveil their pivotal impact on the realization of reliable, efficient, and low-latency DT.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Lina Bariah (26 papers)
  2. Merouane Debbah (269 papers)
Citations (14)