Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Edge-oriented Implicit Neural Representation with Channel Tuning (2209.11697v1)

Published 22 Sep 2022 in cs.CV and cs.AI

Abstract: Implicit neural representation, which expresses an image as a continuous function rather than a discrete grid form, is widely used for image processing. Despite its outperforming results, there are still remaining limitations on restoring clear shapes of a given signal such as the edges of an image. In this paper, we propose Gradient Magnitude Adjustment algorithm which calculates the gradient of an image for training the implicit representation. In addition, we propose Edge-oriented Representation Network (EoREN) that can reconstruct the image with clear edges by fitting gradient information (Edge-oriented module). Furthermore, we add Channel-tuning module to adjust the distribution of given signals so that it solves a chronic problem of fitting gradients. By separating backpropagation paths of the two modules, EoREN can learn true color of the image without hindering the role for gradients. We qualitatively show that our model can reconstruct complex signals and demonstrate general reconstruction ability of our model with quantitative results.

Summary

We haven't generated a summary for this paper yet.