Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incorporation of Human Knowledge into Data Embeddings to Improve Pattern Significance and Interpretability (2209.11364v1)

Published 23 Sep 2022 in cs.HC

Abstract: Embedding is a common technique for analyzing multi-dimensional data. However, the embedding projection cannot always form significant and interpretable visual structures that foreshadow underlying data patterns. We propose an approach that incorporates human knowledge into data embeddings to improve pattern significance and interpretability. The core idea is (1) externalizing tacit human knowledge as explicit sample labels and (2) adding a classification loss in the embedding network to encode samples' classes. The approach pulls samples of the same class with similar data features closer in the projection, leading to more compact (significant) and class-consistent (interpretable) visual structures. We give an embedding network with a customized classification loss to implement the idea and integrate the network into a visualization system to form a workflow that supports flexible class creation and pattern exploration. Patterns found on open datasets in case studies, subjects' performance in a user study, and quantitative experiment results illustrate the general usability and effectiveness of the approach.

Citations (8)

Summary

We haven't generated a summary for this paper yet.