An NWDAF Approach to 5G Core Network Signaling Traffic: Analysis and Characterization (2209.10428v3)
Abstract: Data-driven approaches and paradigms have become promising solutions to efficient network performances through optimization. These approaches focus on state-of-the-art machine learning techniques that can address the needs of 5G networks and the networks of tomorrow, such as proactive load balancing. In contrast to model-based approaches, data-driven approaches do not need accurate models to tackle the target problem, and their associated architectures provide a flexibility of available system parameters that improve the feasibility of learning-based algorithms in mobile wireless networks. The work presented in this paper focuses on demonstrating a working system prototype of the 5G Core (5GC) network and the Network Data Analytics Function (NWDAF) used to bring the benefits of data-driven techniques to fruition. Analyses of the network-generated data explore core intra-network interactions through unsupervised learning, clustering, and evaluate these results as insights for future opportunities and works.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.