Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

uChecker: Masked Pretrained Language Models as Unsupervised Chinese Spelling Checkers (2209.07068v1)

Published 15 Sep 2022 in cs.CL

Abstract: The task of Chinese Spelling Check (CSC) is aiming to detect and correct spelling errors that can be found in the text. While manually annotating a high-quality dataset is expensive and time-consuming, thus the scale of the training dataset is usually very small (e.g., SIGHAN15 only contains 2339 samples for training), therefore supervised-learning based models usually suffer the data sparsity limitation and over-fitting issue, especially in the era of big LLMs. In this paper, we are dedicated to investigating the \textbf{unsupervised} paradigm to address the CSC problem and we propose a framework named \textbf{uChecker} to conduct unsupervised spelling error detection and correction. Masked pretrained LLMs such as BERT are introduced as the backbone model considering their powerful language diagnosis capability. Benefiting from the various and flexible MASKing operations, we propose a Confusionset-guided masking strategy to fine-train the masked LLM to further improve the performance of unsupervised detection and correction. Experimental results on standard datasets demonstrate the effectiveness of our proposed model uChecker in terms of character-level and sentence-level Accuracy, Precision, Recall, and F1-Measure on tasks of spelling error detection and correction respectively.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Piji Li (75 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.