Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PINCH: An Adversarial Extraction Attack Framework for Deep Learning Models (2209.06300v2)

Published 13 Sep 2022 in cs.CR, cs.AI, and cs.LG

Abstract: Adversarial extraction attacks constitute an insidious threat against Deep Learning (DL) models in-which an adversary aims to steal the architecture, parameters, and hyper-parameters of a targeted DL model. Existing extraction attack literature have observed varying levels of attack success for different DL models and datasets, yet the underlying cause(s) behind their susceptibility often remain unclear, and would help facilitate creating secure DL systems. In this paper we present PINCH: an efficient and automated extraction attack framework capable of designing, deploying, and analyzing extraction attack scenarios across heterogeneous hardware platforms. Using PINCH, we perform extensive experimental evaluation of extraction attacks against 21 model architectures to explore new extraction attack scenarios and further attack staging. Our findings show (1) key extraction characteristics whereby particular model configurations exhibit strong resilience against specific attacks, (2) even partial extraction success enables further staging for other adversarial attacks, and (3) equivalent stolen models uncover differences in expressive power, yet exhibit similar captured knowledge.

Citations (3)

Summary

We haven't generated a summary for this paper yet.