Papers
Topics
Authors
Recent
Search
2000 character limit reached

Traffic Prediction and Fast Uplink for Hidden Markov IoT Models

Published 13 Sep 2022 in cs.NI, cs.IT, and math.IT | (2209.05939v1)

Abstract: In this work, we present a novel traffic prediction and fast uplink framework for IoT networks controlled by binary Markovian events. First, we apply the forward algorithm with hidden Markov models (HMM) in order to schedule the available resources to the devices with maximum likelihood activation probabilities via fast uplink grant. In addition, we evaluate the regret metric as the number of wasted transmission slots to evaluate the performance of the prediction. Next, we formulate a fairness optimization problem to minimize the age of information while keeping the regret as minimum as possible. Finally, we propose an iterative algorithm to estimate the model hyperparameters (activation probabilities) in a real-time application and apply an online-learning version of the proposed traffic prediction scheme. Simulation results show that the proposed algorithms outperform baseline models such as time division multiple access (TDMA) and grant-free (GF) random-access in terms of regret, the efficiency of system usage, and age of information.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.