Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural3Points: Learning to Generate Physically Realistic Full-body Motion for Virtual Reality Users (2209.05753v1)

Published 13 Sep 2022 in cs.GR

Abstract: Animating an avatar that reflects a user's action in the VR world enables natural interactions with the virtual environment. It has the potential to allow remote users to communicate and collaborate in a way as if they met in person. However, a typical VR system provides only a very sparse set of up to three positional sensors, including a head-mounted display (HMD) and optionally two hand-held controllers, making the estimation of the user's full-body movement a difficult problem. In this work, we present a data-driven physics-based method for predicting the realistic full-body movement of the user according to the transformations of these VR trackers and simulating an avatar character to mimic such user actions in the virtual world in real-time. We train our system using reinforcement learning with carefully designed pretraining processes to ensure the success of the training and the quality of the simulation. We demonstrate the effectiveness of the method with an extensive set of examples.

Citations (24)

Summary

We haven't generated a summary for this paper yet.