Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-Coupled Iterative Learning Control for Complex Systems: A Monotonically Convergent and Computationally Efficient Approach (2209.05155v1)

Published 12 Sep 2022 in eess.SY and cs.SY

Abstract: Cross-coupled iterative learning control (ILC) can achieve high performance for manufacturing applications in which tracking a contour is essential for the quality of a product. The aim of this paper is to develop a framework for norm-optimal cross-coupled ILC that enables the use of exact contour errors that are calculated offline, and iteration- and time-varying weights. Conditions for the monotonic convergence of this iteration-varying ILC algorithm are developed. In addition, a resource-efficient implementation is proposed in which the ILC update law is reframed as a linear quadratic tracking problem, reducing the computational load significantly. The approach is illustrated on a simulation example.

Citations (1)

Summary

We haven't generated a summary for this paper yet.