Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Banknote Recognition for Visually Impaired People (Case of Ethiopian note) (2209.03236v1)

Published 25 Aug 2022 in cs.HC, cs.AI, cs.CV, and cs.LG

Abstract: Currency is used almost everywhere to facilitate business. In most developing countries, especially the ones in Africa, tangible notes are predominantly used in everyday financial transactions. One of these countries, Ethiopia, is believed to have one of the world highest rates of blindness (1.6%) and low vision (3.7%). There are around 4 million visually impaired people; With 1.7 million people being in complete vision loss. Those people face a number of challenges when they are in a bus station, in shopping centers, or anywhere which requires the physical exchange of money. In this paper, we try to provide a solution to this issue using AI/ML applications. We developed an Android and IOS compatible mobile application with a model that achieved 98.9% classification accuracy on our dataset. The application has a voice integrated feature that tells the type of the scanned currency in Amharic, the working language of Ethiopia. The application is developed to be easily accessible by its users. It is build to reduce the burden of visually impaired people in Ethiopia.

Summary

We haven't generated a summary for this paper yet.