Papers
Topics
Authors
Recent
Search
2000 character limit reached

Utilizing Post-Hurricane Satellite Imagery to Identify Flooding Damage with Convolutional Neural Networks

Published 5 Sep 2022 in cs.CV | (2209.02124v1)

Abstract: Post-hurricane damage assessment is crucial towards managing resource allocations and executing an effective response. Traditionally, this evaluation is performed through field reconnaissance, which is slow, hazardous, and arduous. Instead, in this paper we furthered the idea of implementing deep learning through convolutional neural networks in order to classify post-hurricane satellite imagery of buildings as Flooded/Damaged or Undamaged. The experimentation was conducted employing a dataset containing post-hurricane satellite imagery from the Greater Houston area after Hurricane Harvey in 2017. This paper implemented three convolutional neural network model architectures paired with additional model considerations in order to achieve high accuracies (over 99%), reinforcing the effective use of machine learning in post-hurricane disaster assessment.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.