Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Utilizing Post-Hurricane Satellite Imagery to Identify Flooding Damage with Convolutional Neural Networks (2209.02124v1)

Published 5 Sep 2022 in cs.CV

Abstract: Post-hurricane damage assessment is crucial towards managing resource allocations and executing an effective response. Traditionally, this evaluation is performed through field reconnaissance, which is slow, hazardous, and arduous. Instead, in this paper we furthered the idea of implementing deep learning through convolutional neural networks in order to classify post-hurricane satellite imagery of buildings as Flooded/Damaged or Undamaged. The experimentation was conducted employing a dataset containing post-hurricane satellite imagery from the Greater Houston area after Hurricane Harvey in 2017. This paper implemented three convolutional neural network model architectures paired with additional model considerations in order to achieve high accuracies (over 99%), reinforcing the effective use of machine learning in post-hurricane disaster assessment.

Summary

We haven't generated a summary for this paper yet.