Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

Efficient Adiabatic Preparation of Tensor Network States (2209.01230v3)

Published 2 Sep 2022 in quant-ph

Abstract: We propose and study a specific adiabatic path to prepare those tensor network states that are unique ground states of few-body parent Hamiltonians in finite lattices, which include normal tensor network states, as well as other relevant nonnormal states. This path guarantees a gap for finite systems and allows for efficient numerical simulation. In one dimension, we numerically investigate the preparation of a family of states with varying correlation lengths and the one-dimensional Affleck-Kennedy-Lieb-Tasaki (AKLT) state and show that adiabatic preparation can be much faster than standard methods based on sequential preparation. We also apply the method to the two-dimensional AKLT state on the hexagonal lattice, for which no method based on sequential preparation is known, and show that it can be prepared very efficiently for relatively large lattices.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.