Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AutoPET Challenge 2022: Automatic Segmentation of Whole-body Tumor Lesion Based on Deep Learning and FDG PET/CT (2209.01212v1)

Published 31 Aug 2022 in eess.IV, cs.AI, and cs.CV

Abstract: Automatic segmentation of tumor lesions is a critical initial processing step for quantitative PET/CT analysis. However, numerous tumor lesion with different shapes, sizes, and uptake intensity may be distributed in different anatomical contexts throughout the body, and there is also significant uptake in healthy organs. Therefore, building a systemic PET/CT tumor lesion segmentation model is a challenging task. In this paper, we propose a novel training strategy to build deep learning models capable of systemic tumor segmentation. Our method is validated on the training set of the AutoPET 2022 Challenge. We achieved 0.7574 Dice score, 0.0299 false positive volume and 0.2538 false negative volume on preliminary test set.The code of our work is available on the following link: https://github.com/ZZZsn/MICCAI2022-autopet.

Citations (4)

Summary

We haven't generated a summary for this paper yet.