Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Domain Adaptation from Scratch (2209.00830v1)

Published 2 Sep 2022 in cs.CL, cs.AI, and cs.LG

Abstract: Natural language processing (NLP) algorithms are rapidly improving but often struggle when applied to out-of-distribution examples. A prominent approach to mitigate the domain gap is domain adaptation, where a model trained on a source domain is adapted to a new target domain. We present a new learning setup, ``domain adaptation from scratch'', which we believe to be crucial for extending the reach of NLP to sensitive domains in a privacy-preserving manner. In this setup, we aim to efficiently annotate data from a set of source domains such that the trained model performs well on a sensitive target domain from which data is unavailable for annotation. Our study compares several approaches for this challenging setup, ranging from data selection and domain adaptation algorithms to active learning paradigms, on two NLP tasks: sentiment analysis and Named Entity Recognition. Our results suggest that using the abovementioned approaches eases the domain gap, and combining them further improves the results.

Citations (1)

Summary

We haven't generated a summary for this paper yet.