Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cluster-based Sampling in Hindsight Experience Replay for Robotic Tasks (Student Abstract) (2208.14741v4)

Published 31 Aug 2022 in cs.RO and cs.AI

Abstract: In multi-goal reinforcement learning with a sparse binary reward, training agents is particularly challenging, due to a lack of successful experiences. To solve this problem, hindsight experience replay (HER) generates successful experiences even from unsuccessful ones. However, generating successful experiences from uniformly sampled ones is not an efficient process. In this paper, the impact of exploiting the property of achieved goals in generating successful experiences is investigated and a novel cluster-based sampling strategy is proposed. The proposed sampling strategy groups episodes with different achieved goals by using a cluster model and samples experiences in the manner of HER to create the training batch. The proposed method is validated by experiments with three robotic control tasks of the OpenAI Gym. The results of experiments demonstrate that the proposed method is substantially sample efficient and achieves better performance than baseline approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Taeyoung Kim (23 papers)
  2. Dongsoo Har (34 papers)

Summary

We haven't generated a summary for this paper yet.