Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Mathematical Models to Analyze Lua Hybrid Tables and Why They Need a Fix (2208.13602v2)

Published 29 Aug 2022 in cs.DM

Abstract: Lua (Ierusalimschy et al., 1996) is a well-known scripting language, popular among many programmers, most notably in the gaming industry. Remarkably, the only data-structuring mechanism in Lua are associative arrays, called tables. With Lua 5.0, the reference implementation of Lua introduced hybrid tables to implement tables using both a hashmap and a dynamically growing array combined together: the values associated with integer keys are stored in the array part, when suitable, everything else is stored in the hashmap. All this is transparent to the user, who gets a unique simple interface to handle tables. In this paper we carry out a theoretical analysis of the performance of Lua's tables, by considering various worst-case and probabilistic scenarios. In particular, we uncover some problematic situations for the simple probabilistic model where we add a new key with some fixed probability $p>\frac12$ and delete a key with probability $1-p$: the cost of performing T such operations is proved to be $\Omega(T\log T)$ with high probability, where linear complexity is expected instead.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.