Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Hash Table Without Hash Functions, and How to Get the Most Out of Your Random Bits (2209.06038v2)

Published 13 Sep 2022 in cs.DS

Abstract: This paper considers the basic question of how strong of a probabilistic guarantee can a hash table, storing $n$ $(1 + \Theta(1)) \log n$-bit key/value pairs, offer? Past work on this question has been bottlenecked by limitations of the known families of hash functions: The only hash tables to achieve failure probabilities less than $1 / 2{\polylog n}$ require access to fully-random hash functions -- if the same hash tables are implemented using the known explicit families of hash functions, their failure probabilities become $1 / \poly(n)$. To get around these obstacles, we show how to construct a randomized data structure that has the same guarantees as a hash table, but that \emph{avoids the direct use of hash functions}. Building on this, we are able to construct a hash table using $O(n)$ random bits that achieves failure probability $1 / n{n{1 - \epsilon}}$ for an arbitrary positive constant $\epsilon$. In fact, we show that this guarantee can even be achieved by a \emph{succinct dictionary}, that is, by a dictionary that uses space within a $1 + o(1)$ factor of the information-theoretic optimum. Finally we also construct a succinct hash table whose probabilistic guarantees fall on a different extreme, offering a failure probability of $1 / \poly(n)$ while using only $\tilde{O}(\log n)$ random bits. This latter result matches (up to low-order terms) a guarantee previously achieved by Dietzfelbinger et al., but with increased space efficiency and with several surprising technical components.

Citations (5)

Summary

We haven't generated a summary for this paper yet.