Papers
Topics
Authors
Recent
2000 character limit reached

Selection Collider Bias in Large Language Models (2208.10063v2)

Published 22 Aug 2022 in cs.CL and cs.AI

Abstract: In this paper we motivate the causal mechanisms behind sample selection induced collider bias (selection collider bias) that can cause LLMs to learn unconditional dependence between entities that are unconditionally independent in the real world. We show that selection collider bias can become amplified in underspecified learning tasks, and although difficult to overcome, we describe a method to exploit the resulting spurious correlations for determination of when a model may be uncertain about its prediction. We demonstrate an uncertainty metric that matches human uncertainty in tasks with gender pronoun underspecification on an extended version of the Winogender Schemas evaluation set, and we provide an online demo where users can apply our uncertainty metric to their own texts and models.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.