Papers
Topics
Authors
Recent
Search
2000 character limit reached

Diffusion Models Beat GANs on Topology Optimization

Published 20 Aug 2022 in cs.LG and cs.CE | (2208.09591v2)

Abstract: Structural topology optimization, which aims to find the optimal physical structure that maximizes mechanical performance, is vital in engineering design applications in aerospace, mechanical, and civil engineering. Generative adversarial networks (GANs) have recently emerged as a popular alternative to traditional iterative topology optimization methods. However, these models are often difficult to train, have limited generalizability, and due to their goal of mimicking optimal structures, neglect manufacturability and performance objectives like mechanical compliance. We propose TopoDiff - a conditional diffusion-model-based architecture to perform performance-aware and manufacturability-aware topology optimization that overcomes these issues. Our model introduces a surrogate model-based guidance strategy that actively favors structures with low compliance and good manufacturability. Our method significantly outperforms a state-of-art conditional GAN by reducing the average error on physical performance by a factor of eight and by producing eleven times fewer infeasible samples. By introducing diffusion models to topology optimization, we show that conditional diffusion models have the ability to outperform GANs in engineering design synthesis applications too. Our work also suggests a general framework for engineering optimization problems using diffusion models and external performance with constraint-aware guidance. We publicly share the data, code, and trained models here: https://decode.mit.edu/projects/topodiff/.

Citations (42)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.