Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Learning Based Structural Brain-network Generative Model for Analyzing Mild Cognitive Impairment (2208.08896v1)

Published 9 Aug 2022 in q-bio.NC, cs.CV, eess.IV, and eess.SP

Abstract: Mild cognitive impairment(MCI) is a precursor of Alzheimer's disease(AD), and the detection of MCI is of great clinical significance. Analyzing the structural brain networks of patients is vital for the recognition of MCI. However, the current studies on structural brain networks are totally dependent on specific toolboxes, which is time-consuming and subjective. Few tools can obtain the structural brain networks from brain diffusion tensor images. In this work, an adversarial learning-based structural brain-network generative model(SBGM) is proposed to directly learn the structural connections from brain diffusion tensor images. By analyzing the differences in structural brain networks across subjects, we found that the structural brain networks of subjects showed a consistent trend from elderly normal controls(NC) to early mild cognitive impairment(EMCI) to late mild cognitive impairment(LMCI): structural connectivity progressed in a progressively weaker direction as the condition worsened. In addition, our proposed model tri-classifies EMCI, LMCI, and NC subjects, achieving a classification accuracy of 83.33\% on the Alzheimer's Disease Neuroimaging Initiative(ADNI) database.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Heng Kong (3 papers)
  2. Shuqiang Wang (54 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.