Papers
Topics
Authors
Recent
Search
2000 character limit reached

Robust Model Predictive Control with Polytopic Model Uncertainty through System Level Synthesis

Published 21 Mar 2022 in eess.SY, cs.SY, and math.OC | (2203.11375v3)

Abstract: We propose a robust model predictive control (MPC) method for discrete-time linear systems with polytopic model uncertainty and additive disturbances. Optimizing over linear time-varying (LTV) state feedback controllers has been successfully used for robust MPC when only additive disturbances are present. However, it is challenging to design LTV state feedback controllers in the face of model uncertainty whose effects are difficult to bound. To address this issue, we propose a novel approach to over-approximate the effects of both model uncertainty and additive disturbances by a filtered additive disturbance signal. Using the System Level Synthesis framework, we jointly search for robust LTV state feedback controllers and the bounds on the effects of uncertainty online, which allows us to reduce the conservatism and minimize an upper bound on the worst-case cost in robust MPC. We provide a comprehensive numerical comparison of our method and representative robust MPC methods from the literature. Numerical examples demonstrate that our proposed method can significantly reduce the conservatism over a wide range of uncertainty parameters with comparable computational effort as the baseline methods.

Citations (21)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.