Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic Rank and Reward: A Scalable Model for Slate Recommendation (2208.06263v3)

Published 10 Aug 2022 in cs.IR, cs.LG, and stat.ML

Abstract: We introduce Probabilistic Rank and Reward (PRR), a scalable probabilistic model for personalized slate recommendation. Our approach allows off-policy estimation of the reward in the scenario where the user interacts with at most one item from a slate of K items. We show that the probability of a slate being successful can be learned efficiently by combining the reward, whether the user successfully interacted with the slate, and the rank, the item that was selected within the slate. PRR outperforms existing off-policy reward optimizing methods and is far more scalable to large action spaces. Moreover, PRR allows fast delivery of recommendations powered by maximum inner product search (MIPS), making it suitable in low latency domains such as computational advertising.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets