Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variation Control and Evaluation for Generative SlateRecommendations (2102.13302v1)

Published 26 Feb 2021 in cs.IR and cs.LG

Abstract: Slate recommendation generates a list of items as a whole instead of ranking each item individually, so as to better model the intra-list positional biases and item relations. In order to deal with the enormous combinatorial space of slates, recent work considers a generative solution so that a slate distribution can be directly modeled. However, we observe that such approaches -- despite their proved effectiveness in computer vision -- suffer from a trade-off dilemma in recommender systems: when focusing on reconstruction, they easily over-fit the data and hardly generate satisfactory recommendations; on the other hand, when focusing on satisfying the user interests, they get trapped in a few items and fail to cover the item variation in slates. In this paper, we propose to enhance the accuracy-based evaluation with slate variation metrics to estimate the stochastic behavior of generative models. We illustrate that instead of reaching to one of the two undesirable extreme cases in the dilemma, a valid generative solution resides in a narrow "elbow" region in between. And we show that item perturbation can enforce slate variation and mitigate the over-concentration of generated slates, which expand the "elbow" performance to an easy-to-find region. We further propose to separate a pivot selection phase from the generation process so that the model can apply perturbation before generation. Empirical results show that this simple modification can provide even better variance with the same level of accuracy compared to post-generation perturbation methods.

Citations (18)

Summary

We haven't generated a summary for this paper yet.