Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Overview on Over-the-Air Federated Edge Learning (2208.05643v1)

Published 11 Aug 2022 in cs.IT and math.IT

Abstract: Over-the-air federated edge learning (Air-FEEL) has emerged as a promising solution to support edge AI in future beyond 5G (B5G) and 6G networks. In Air-FEEL, distributed edge devices use their local data to collaboratively train AI models while preserving data privacy, in which the over-the-air model/gradient aggregation is exploited for enhancing the learning efficiency. This article provides an overview on the state of the art of Air-FEEL. First, we present the basic principle of Air-FEEL, and introduce the technical challenges for Air-FEEL design due to the over-the-air aggregation errors, as well as the resource and data heterogeneities at edge devices. Next, we present the fundamental performance metrics for Air-FEEL, and review resource management solutions and design considerations for enhancing the Air-FEEL performance. Finally, several interesting research directions are pointed out to motivate future work.

Citations (20)

Summary

We haven't generated a summary for this paper yet.