Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

LinGBM: A Performance Benchmark for Approaches to Build GraphQL Servers (Extended Version) (2208.04784v1)

Published 9 Aug 2022 in cs.DB

Abstract: GraphQL is a popular new approach to build Web APIs that enable clients to retrieve exactly the data they need. Given the growing number of tools and techniques for building GraphQL servers, there is an increasing need for comparing how particular approaches or techniques affect the performance of a GraphQL server. To this end, we present LinGBM, a GraphQL performance benchmark to experimentally study the performance achieved by various approaches for creating a GraphQL server. In this article, we discuss the design considerations of the benchmark, describe its main components (data schema; query templates; performance metrics), and analyze the benchmark in terms of statistical properties that are relevant for defining concrete experiments. Thereafter, we present experimental results obtained by applying the benchmark in three different use cases, which demonstrates the broad applicability of LinGBM.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)