Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Task Fusion via Reinforcement Learning for Long-Term User Satisfaction in Recommender Systems (2208.04560v2)

Published 9 Aug 2022 in cs.IR and cs.AI

Abstract: Recommender System (RS) is an important online application that affects billions of users every day. The mainstream RS ranking framework is composed of two parts: a Multi-Task Learning model (MTL) that predicts various user feedback, i.e., clicks, likes, sharings, and a Multi-Task Fusion model (MTF) that combines the multi-task outputs into one final ranking score with respect to user satisfaction. There has not been much research on the fusion model while it has great impact on the final recommendation as the last crucial process of the ranking. To optimize long-term user satisfaction rather than obtain instant returns greedily, we formulate MTF task as Markov Decision Process (MDP) within a recommendation session and propose a Batch Reinforcement Learning (RL) based Multi-Task Fusion framework (BatchRL-MTF) that includes a Batch RL framework and an online exploration. The former exploits Batch RL to learn an optimal recommendation policy from the fixed batch data offline for long-term user satisfaction, while the latter explores potential high-value actions online to break through the local optimal dilemma. With a comprehensive investigation on user behaviors, we model the user satisfaction reward with subtle heuristics from two aspects of user stickiness and user activeness. Finally, we conduct extensive experiments on a billion-sample level real-world dataset to show the effectiveness of our model. We propose a conservative offline policy estimator (Conservative-OPEstimator) to test our model offline. Furthermore, we take online experiments in a real recommendation environment to compare performance of different models. As one of few Batch RL researches applied in MTF task successfully, our model has also been deployed on a large-scale industrial short video platform, serving hundreds of millions of users.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Qihua Zhang (3 papers)
  2. Junning Liu (3 papers)
  3. Yuzhuo Dai (3 papers)
  4. Yiyan Qi (21 papers)
  5. Yifan Yuan (14 papers)
  6. Kunlun Zheng (1 paper)
  7. Fan Huang (25 papers)
  8. Xianfeng Tan (5 papers)
Citations (43)

Summary

We haven't generated a summary for this paper yet.