Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Development of fully intuitionistic fuzzy data envelopment analysis model with missing data: an application to Indian police sector (2208.02675v1)

Published 27 Jul 2022 in cs.AI, math.OC, and stat.AP

Abstract: Data Envelopment Analysis (DEA) is a technique used to measure the efficiency of decision-making units (DMUs). In order to measure the efficiency of DMUs, the essential requirement is input-output data. Data is usually collected by humans, machines, or both. Due to human/machine errors, there are chances of having some missing values or inaccuracy, such as vagueness/uncertainty/hesitation in the collected data. In this situation, it will be difficult to measure the efficiencies of DMUs accurately. To overcome these shortcomings, a method is presented that can deal with missing values and inaccuracy in the data. To measure the performance efficiencies of DMUs, an input minimization BCC (IMBCC) model in a fully intuitionistic fuzzy (IF) environment is proposed. To validate the efficacy of the proposed fully intuitionistic fuzzy input minimization BCC (FIFIMBCC) model and the technique to deal with missing values in the data, a real-life application to measure the performance efficiencies of Indian police stations is presented.

Summary

We haven't generated a summary for this paper yet.