Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Screening Strategy for Structured Optimization Involving Nonconvex $\ell_{q,p}$ Regularization (2208.02161v1)

Published 2 Aug 2022 in cs.LG and stat.ME

Abstract: In this paper, we develop a simple yet effective screening rule strategy to improve the computational efficiency in solving structured optimization involving nonconvex $\ell_{q,p}$ regularization. Based on an iteratively reweighted $\ell_1$ (IRL1) framework, the proposed screening rule works like a preprocessing module that potentially removes the inactive groups before starting the subproblem solver, thereby reducing the computational time in total. This is mainly achieved by heuristically exploiting the dual subproblem information during each iteration.Moreover, we prove that our screening rule can remove all inactive variables in a finite number of iterations of the IRL1 method. Numerical experiments illustrate the efficiency of our screening rule strategy compared with several state-of-the-art algorithms.

Summary

We haven't generated a summary for this paper yet.