Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Document Summarization with Centroid-Based Pretraining (2208.01006v2)

Published 1 Aug 2022 in cs.CL

Abstract: In Multi-Document Summarization (MDS), the input can be modeled as a set of documents, and the output is its summary. In this paper, we focus on pretraining objectives for MDS. Specifically, we introduce a novel pretraining objective, which involves selecting the ROUGE-based centroid of each document cluster as a proxy for its summary. Our objective thus does not require human written summaries and can be utilized for pretraining on a dataset consisting solely of document sets. Through zero-shot, few-shot, and fully supervised experiments on multiple MDS datasets, we show that our model Centrum is better or comparable to a state-of-the-art model. We make the pretrained and fine-tuned models freely available to the research community https://github.com/ratishsp/centrum.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub