Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$\mathbb{Z}_p\mathbb{Z}_{p^2}\dots\mathbb{Z}_{p^s}$-Additive Generalized Hadamard Codes (2207.14702v2)

Published 29 Jul 2022 in cs.IT and math.IT

Abstract: The $\mathbb{Z}p\mathbb{Z}{p2}\dots\mathbb{Z}_{ps}$-additive codes are subgroups of $\mathbb{Z}p{\alpha_1} \times \mathbb{Z}{p2}{\alpha_2} \times \cdots \times \mathbb{Z}{ps}{\alpha_s}$, and can be seen as linear codes over $\mathbb{Z}_p$ when $\alpha_i=0$ for all $i \in {2,\dots, s}$, a $\mathbb{Z}{ps}$-additive code when $\alpha_i=0$ for all $i \in {1,\dots, s-1}$ , or a $\mathbb{Z}p\mathbb{Z}{p2}$-additive code when $s=2$, or $\mathbb{Z}2\mathbb{Z}_4$-additive codes when $p=2$ and $s=2$. A $\mathbb{Z}_p\mathbb{Z}{p2}\dots\mathbb{Z}_{ps}$-linear generalized Hadamard (GH) code is a GH code over $\mathbb{Z}p$ which is the Gray map image of a $\mathbb{Z}_p\mathbb{Z}{p2}\dots\mathbb{Z}_{ps}$-additive code. In this paper, we generalize some known results for $\mathbb{Z}p\mathbb{Z}{p2}\dots\mathbb{Z}_{ps}$-linear GH codes with $p$ prime and $s\geq 2$. First, we give a recursive construction of $\mathbb{Z}p\mathbb{Z}{p2}\dots \mathbb{Z}{ps}$-additive GH codes of type $(\alpha_1,\dots,\alpha_s;t_1,\dots,t_s)$ with $t_1\geq 1, t_2,\dots,t{s-1}\geq 0$, and $t_s\geq1$. Then, we show for which types the corresponding $\mathbb{Z}p\mathbb{Z}{p2}\dots\mathbb{Z}_{ps}$-linear GH codes are nonlinear over $\mathbb{Z}_p$. We also compute the kernel and its dimension whenever they are nonlinear.

Summary

We haven't generated a summary for this paper yet.