Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On $Z_{p^r}Z_{p^r}Z_{p^s}$-Additive Cyclic Codes (2202.11454v1)

Published 23 Feb 2022 in cs.IT, cs.DM, and math.IT

Abstract: In this paper, we introduce $\mathbb{Z}{pr}\mathbb{Z}{pr}\mathbb{Z}_{ps}$-additive cyclic codes for $r\leq s$. These codes can be identified as $\mathbb{Z}{ps}[x]$-submodules of $\mathbb{Z}{pr}[x]/\langle x{\alpha}-1\rangle \times \mathbb{Z}{pr}[x]/\langle x{\beta}-1\rangle\times \mathbb{Z}{ps}[x]/\langle x{\gamma}-1\rangle$. We determine the generator polynomials and minimal generating sets for this family of codes. Some previous works has been done for the case $p=2$ with $r=s=1$, $r=s=2$, and $r=1,s=2$. However, we show that in these previous works the classification of these codes were incomplete and the statements in this paper complete such classification. We also discuss the structure of separable $\mathbb{Z}{pr}\mathbb{Z}{pr}\mathbb{Z}_{ps}$-additive cyclic codes and determine their generator polynomials. Further, we also study the duality of $\mathbb{Z}_{ps}[x]$-submodules. As applications, we present some examples and construct some optimal binary codes.

Summary

We haven't generated a summary for this paper yet.