Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Kernel of $\mathbb{Z}_{2^s}$-Linear Hadamard Codes (1801.05189v1)

Published 16 Jan 2018 in cs.IT and math.IT

Abstract: The $\mathbb{Z}{2s}$-additive codes are subgroups of $\mathbb{Z}n{2s}$, and can be seen as a generalization of linear codes over $\mathbb{Z}2$ and $\mathbb{Z}_4$. A $\mathbb{Z}{2s}$-linear Hadamard code is a binary Hadamard code which is the Gray map image of a $\mathbb{Z}{2s}$-additive code. It is known that the dimension of the kernel can be used to give a complete classification of the $\mathbb{Z}_4$-linear Hadamard codes. In this paper, the kernel of $\mathbb{Z}{2s}$-linear Hadamard codes and its dimension are established for $s > 2$. Moreover, we prove that this invariant only provides a complete classification for some values of $t$ and $s$. The exact amount of nonequivalent such codes are given up to $t=11$ for any $s\geq 2$, by using also the rank and, in some cases, further computations.

Citations (4)

Summary

We haven't generated a summary for this paper yet.