Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$-Additive Hadamard Codes (2301.09404v1)

Published 23 Jan 2023 in cs.IT and math.IT

Abstract: The $\mathbb{Z}2\mathbb{Z}_4\mathbb{Z}_8$-additive codes are subgroups of $\mathbb{Z}_2{\alpha_1} \times \mathbb{Z}_4{\alpha_2} \times \mathbb{Z}_8{\alpha_3}$, and can be seen as linear codes over $\mathbb{Z}_2$ when $\alpha_2=\alpha_3=0$, $\mathbb{Z}_4$-additive or $\mathbb{Z}_8$-additive codes when $\alpha_1=\alpha_3=0$ or $\alpha_1=\alpha_2=0$, respectively, or $\mathbb{Z}_2\mathbb{Z}_4$-additive codes when $\alpha_3=0$. A $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$-linear Hadamard code is a Hadamard code which is the Gray map image of a $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$-additive code. In this paper, we generalize some known results for $\mathbb{Z}_2\mathbb{Z}_4$-linear Hadamard codes to $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$-linear Hadamard codes with $\alpha_1 \neq 0$, $\alpha_2 \neq 0$, and $\alpha_3 \neq 0$. First, we give a recursive construction of $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$-additive Hadamard codes of type $(\alpha_1,\alpha_2, \alpha_3;t_1,t_2, t_3)$ with $t_1\geq 1$, $t_2 \geq 0$, and $t_3\geq 1$. Then, we show that in general the $\mathbb{Z}_4$-linear, $\mathbb{Z}_8$-linear and $\mathbb{Z}_2\mathbb{Z}_4$-linear Hadamard codes are not included in the family of $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$-linear Hadamard codes with $\alpha_1 \neq 0$, $\alpha_2 \neq 0$, and $\alpha_3 \neq 0$. Actually, we point out that none of these nonlinear $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$-linear Hadamard codes of length $2{11}$ is equivalent to a $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$-linear Hadamard code of any other type, a $\mathbb{Z}_2\mathbb{Z}_4$-linear Hadamard code, or a $\mathbb{Z}{2s}$-linear Hadamard code, with $s\geq 2$, of the same length $2{11}$.

Summary

We haven't generated a summary for this paper yet.