Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Localization of Coordinated Cyber-Physical Attacks in Power Grids Using Moving Target Defense and Deep Learning (2207.12339v1)

Published 25 Jul 2022 in eess.SY and cs.SY

Abstract: As one of the most sophisticated attacks against power grids, coordinated cyber-physical attacks (CCPAs) damage the power grid's physical infrastructure and use a simultaneous cyber attack to mask its effect. This work proposes a novel approach to detect such attacks and identify the location of the line outages (due to the physical attack). The proposed approach consists of three parts. Firstly, moving target defense (MTD) is applied to expose the physical attack by actively perturbing transmission line reactance via distributed flexible AC transmission system (D-FACTS) devices. MTD invalidates the attackers' knowledge required to mask their physical attack. Secondly, convolution neural networks (CNNs) are applied to localize line outage position from the compromised measurements. Finally, model agnostic meta-learning (MAML) is used to accelerate the training speed of CNN following the topology reconfigurations (due to MTD) and reduce the data/retraining time requirements. Simulations are carried out using IEEE test systems. The experimental results demonstrate that the proposed approach can effectively localize line outages in stealthy CCPAs.

Citations (8)

Summary

We haven't generated a summary for this paper yet.