Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Recurrent Units and the Forward-Backward Algorithm (2207.10486v1)

Published 21 Jul 2022 in stat.ML and cs.LG

Abstract: Using Bayes's theorem, we derive a unit-wise recurrence as well as a backward recursion similar to the forward-backward algorithm. The resulting Bayesian recurrent units can be integrated as recurrent neural networks within deep learning frameworks, while retaining a probabilistic interpretation from the direct correspondence with hidden Markov models. Whilst the contribution is mainly theoretical, experiments on speech recognition indicate that adding the derived units at the end of state-of-the-art recurrent architectures can improve the performance at a very low cost in terms of trainable parameters.

Summary

We haven't generated a summary for this paper yet.