Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automated machine learning for borehole resistivity measurements (2207.09849v1)

Published 20 Jul 2022 in cs.LG and cs.AI

Abstract: Deep neural networks (DNNs) offer a real-time solution for the inversion of borehole resistivity measurements to approximate forward and inverse operators. It is possible to use extremely large DNNs to approximate the operators, but it demands a considerable training time. Moreover, evaluating the network after training also requires a significant amount of memory and processing power. In addition, we may overfit the model. In this work, we propose a scoring function that accounts for the accuracy and size of the DNNs compared to a reference DNN that provides a good approximation for the operators. Using this scoring function, we use DNN architecture search algorithms to obtain a quasi-optimal DNN smaller than the reference network; hence, it requires less computational effort during training and evaluation. The quasi-optimal DNN delivers comparable accuracy to the original large DNN.

Citations (2)

Summary

We haven't generated a summary for this paper yet.