Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Localization supervision of chest x-ray classifiers using label-specific eye-tracking annotation (2207.09771v2)

Published 20 Jul 2022 in cs.CV and eess.IV

Abstract: Convolutional neural networks (CNNs) have been successfully applied to chest x-ray (CXR) images. Moreover, annotated bounding boxes have been shown to improve the interpretability of a CNN in terms of localizing abnormalities. However, only a few relatively small CXR datasets containing bounding boxes are available, and collecting them is very costly. Opportunely, eye-tracking (ET) data can be collected in a non-intrusive way during the clinical workflow of a radiologist. We use ET data recorded from radiologists while dictating CXR reports to train CNNs. We extract snippets from the ET data by associating them with the dictation of keywords and use them to supervise the localization of specific abnormalities. We show that this method improves a model's interpretability without impacting its image-level classification.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ricardo Bigolin Lanfredi (8 papers)
  2. Joyce D. Schroeder (8 papers)
  3. Tolga Tasdizen (36 papers)
Citations (1)