Scalable Spatio-Temporal Smoothing via Hierarchical Sparse Cholesky Decomposition
Abstract: We propose an approximation to the forward-filter-backward-sampler (FFBS) algorithm for large-scale spatio-temporal smoothing. FFBS is commonly used in Bayesian statistics when working with linear Gaussian state-space models, but it requires inverting covariance matrices which have the size of the latent state vector. The computational burden associated with this operation effectively prohibits its applications in high-dimensional settings. We propose a scalable spatio-temporal FFBS approach based on the hierarchical Vecchia approximation of Gaussian processes, which has been previously successfully used in spatial statistics. On simulated and real data, our approach outperformed a low-rank FFBS approximation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.