Papers
Topics
Authors
Recent
2000 character limit reached

Scalable Spatio-Temporal Smoothing via Hierarchical Sparse Cholesky Decomposition

Published 19 Jul 2022 in stat.ME and stat.CO | (2207.09384v1)

Abstract: We propose an approximation to the forward-filter-backward-sampler (FFBS) algorithm for large-scale spatio-temporal smoothing. FFBS is commonly used in Bayesian statistics when working with linear Gaussian state-space models, but it requires inverting covariance matrices which have the size of the latent state vector. The computational burden associated with this operation effectively prohibits its applications in high-dimensional settings. We propose a scalable spatio-temporal FFBS approach based on the hierarchical Vecchia approximation of Gaussian processes, which has been previously successfully used in spatial statistics. On simulated and real data, our approach outperformed a low-rank FFBS approximation.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.