Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Cholesky factorization by Kullback-Leibler minimization (2004.14455v3)

Published 29 Apr 2020 in math.NA, cs.NA, math.OC, math.ST, stat.CO, and stat.TH

Abstract: We propose to compute a sparse approximate inverse Cholesky factor $L$ of a dense covariance matrix $\Theta$ by minimizing the Kullback-Leibler divergence between the Gaussian distributions $\mathcal{N}(0, \Theta)$ and $\mathcal{N}(0, L{-\top} L{-1})$, subject to a sparsity constraint. Surprisingly, this problem has a closed-form solution that can be computed efficiently, recovering the popular Vecchia approximation in spatial statistics. Based on recent results on the approximate sparsity of inverse Cholesky factors of $\Theta$ obtained from pairwise evaluation of Green's functions of elliptic boundary-value problems at points ${x_{i}}_{1 \leq i \leq N} \subset \mathbb{R}{d}$, we propose an elimination ordering and sparsity pattern that allows us to compute $\epsilon$-approximate inverse Cholesky factors of such $\Theta$ in computational complexity $\mathcal{O}(N \log(N/\epsilon)d)$ in space and $\mathcal{O}(N \log(N/\epsilon){2d})$ in time. To the best of our knowledge, this is the best asymptotic complexity for this class of problems. Furthermore, our method is embarrassingly parallel, automatically exploits low-dimensional structure in the data, and can perform Gaussian-process regression in linear (in $N$) space complexity. Motivated by the optimality properties of our methods, we propose methods for applying it to the joint covariance of training and prediction points in Gaussian-process regression, greatly improving stability and computational cost. Finally, we show how to apply our method to the important setting of Gaussian processes with additive noise, sacrificing neither accuracy nor computational complexity.

Citations (83)

Summary

We haven't generated a summary for this paper yet.