Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Preventing Inferences through Data Dependencies on Sensitive Data (2207.08757v3)

Published 18 Jul 2022 in cs.DB

Abstract: Simply restricting the computation to non-sensitive part of the data may lead to inferences on sensitive data through data dependencies. Inference control from data dependencies has been studied in the prior work. However, existing solutions either detect and deny queries which may lead to leakage -- resulting in poor utility, or only protects against exact reconstruction of the sensitive data -- resulting in poor security. In this paper, we present a novel security model called full deniability. Under this stronger security model, any information inferred about sensitive data from non-sensitive data is considered as a leakage. We describe algorithms for efficiently implementing full deniability on a given database instance with a set of data dependencies and sensitive cells. Using experiments on two different datasets, we demonstrate that our approach protects against realistic adversaries while hiding only minimal number of additional non-sensitive cells and scales well with database size and sensitive data.

Citations (2)

Summary

We haven't generated a summary for this paper yet.