Symplectic cacti, virtualization and Berenstein-Kirillov groups
Abstract: We explicitly realize an internal action of the symplectic cactus group, recently defined by Halacheva for any complex, reductive, finite-dimensional Lie algebra, on crystals of Kashiwara-Nakashima tableaux. Our methods include a symplectic version of jeu de taquin due to Sheats and Lecouvey, symplectic reversal, and virtualization due to Baker. As an application, we define and study a symplectic version of the Berenstein-Kirillov group and show that it is a quotient of the symplectic cactus group. In addition two relations for symplectic Berenstein-Kirillov group are given that do not follow from the defining relations of the symplectic cactus group.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.