Papers
Topics
Authors
Recent
Search
2000 character limit reached

On Schützenberger modules of the cactus group

Published 20 Sep 2021 in math.CO and math.RT | (2109.09312v2)

Abstract: The cactus group acts on the set of standard Young tableau of a given shape by (partial) Sch\"utzenberger involutions. It is natural to extend this action to the corresponding Specht module by identifying standard Young tableau with the Kazhdan-Lusztig basis. We term these representations of the cactus group "Sch\"utzenberger modules", denoted $S\lambda_{\mathsf{Sch}}$, and in this paper we investigate their decomposition into irreducible components. We prove that when $\lambda$ is a hook shape, the cactus group action on $S\lambda_{\mathsf{Sch}}$ factors through $S_{n-1}$ and the resulting multiplicities are given by Kostka coefficients. Our proof relies on results of Berenstein and Kirillov and Chmutov, Glick, and Pylyavskyy.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.