Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ORB-based SLAM accelerator on SoC FPGA (2207.08405v1)

Published 18 Jul 2022 in eess.IV

Abstract: Simultaneous Localization and Mapping (SLAM) is one of the main components of autonomous navigation systems. With the increase in popularity of drones, autonomous navigation on low-power systems is seeing widespread application. Most SLAM algorithms are computationally intensive and struggle to run in real-time on embedded devices with reasonable accuracy. ORB-SLAM is an open-sourced feature-based SLAM that achieves high accuracy with reduced computational complexity. We propose an SoC based ORB-SLAM system that accelerates the computationally intensive visual feature extraction and matching on hardware. Our FPGA system based on a Zynq-family SoC runs 8.5x, 1.55x and 1.35x faster compared to an ARM CPU, Intel Desktop CPU, and a state-of-the-art FPGA system respectively, while averaging a 2x improvement in accuracy compared to prior work on FPGA.

Citations (1)

Summary

We haven't generated a summary for this paper yet.