Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Contrastive Learning via Asymmetric InfoNCE (2207.08374v1)

Published 18 Jul 2022 in cs.CV, cs.AI, and cs.LG

Abstract: Contrastive learning (CL) has recently been applied to adversarial learning tasks. Such practice considers adversarial samples as additional positive views of an instance, and by maximizing their agreements with each other, yields better adversarial robustness. However, this mechanism can be potentially flawed, since adversarial perturbations may cause instance-level identity confusion, which can impede CL performance by pulling together different instances with separate identities. To address this issue, we propose to treat adversarial samples unequally when contrasted, with an asymmetric InfoNCE objective ($A-InfoNCE$) that allows discriminating considerations of adversarial samples. Specifically, adversaries are viewed as inferior positives that induce weaker learning signals, or as hard negatives exhibiting higher contrast to other negative samples. In the asymmetric fashion, the adverse impacts of conflicting objectives between CL and adversarial learning can be effectively mitigated. Experiments show that our approach consistently outperforms existing Adversarial CL methods across different finetuning schemes without additional computational cost. The proposed A-InfoNCE is also a generic form that can be readily extended to other CL methods. Code is available at https://github.com/yqy2001/A-InfoNCE.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com