Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Game of Trojans: A Submodular Byzantine Approach (2207.05937v1)

Published 13 Jul 2022 in cs.LG, cs.CR, and cs.GT

Abstract: Machine learning models in the wild have been shown to be vulnerable to Trojan attacks during training. Although many detection mechanisms have been proposed, strong adaptive attackers have been shown to be effective against them. In this paper, we aim to answer the questions considering an intelligent and adaptive adversary: (i) What is the minimal amount of instances required to be Trojaned by a strong attacker? and (ii) Is it possible for such an attacker to bypass strong detection mechanisms? We provide an analytical characterization of adversarial capability and strategic interactions between the adversary and detection mechanism that take place in such models. We characterize adversary capability in terms of the fraction of the input dataset that can be embedded with a Trojan trigger. We show that the loss function has a submodular structure, which leads to the design of computationally efficient algorithms to determine this fraction with provable bounds on optimality. We propose a Submodular Trojan algorithm to determine the minimal fraction of samples to inject a Trojan trigger. To evade detection of the Trojaned model, we model strategic interactions between the adversary and Trojan detection mechanism as a two-player game. We show that the adversary wins the game with probability one, thus bypassing detection. We establish this by proving that output probability distributions of a Trojan model and a clean model are identical when following the Min-Max (MM) Trojan algorithm. We perform extensive evaluations of our algorithms on MNIST, CIFAR-10, and EuroSAT datasets. The results show that (i) with Submodular Trojan algorithm, the adversary needs to embed a Trojan trigger into a very small fraction of samples to achieve high accuracy on both Trojan and clean samples, and (ii) the MM Trojan algorithm yields a trained Trojan model that evades detection with probability 1.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube