Papers
Topics
Authors
Recent
2000 character limit reached

Robustness Evaluation of Deep Unsupervised Learning Algorithms for Intrusion Detection Systems

Published 25 Jun 2022 in cs.CR, cs.LG, and cs.NI | (2207.03576v2)

Abstract: Recently, advances in deep learning have been observed in various fields, including computer vision, natural language processing, and cybersecurity. Machine learning (ML) has demonstrated its ability as a potential tool for anomaly detection-based intrusion detection systems to build secure computer networks. Increasingly, ML approaches are widely adopted than heuristic approaches for cybersecurity because they learn directly from data. Data is critical for the development of ML systems, and becomes potential targets for attackers. Basically, data poisoning or contamination is one of the most common techniques used to fool ML models through data. This paper evaluates the robustness of six recent deep learning algorithms for intrusion detection on contaminated data. Our experiments suggest that the state-of-the-art algorithms used in this study are sensitive to data contamination and reveal the importance of self-defense against data perturbation when developing novel models, especially for intrusion detection systems.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.