Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Perturbative Steady States of Completely Positive Quantum Master Equations (2207.03108v3)

Published 7 Jul 2022 in quant-ph and cond-mat.stat-mech

Abstract: The Lindblad form guarantees complete positivity of a Markovian quantum master equation (QME). However, its microscopic derivation for a quantum system weakly interacting with a thermal bath requires several approximations, which may result in inaccuracies in the QME. Recently, various Lindbladian QMEs were derived without resorting to the secular approximation from the Redfield equation which does not guarantee the complete positivity. Here we explicitly calculate, in a perturbative manner, the equilibrium steady states of these Lindbladian QMEs. We compare the results with the steady state of the Redfield equation obtained from an analytic continuation method, which coincides with the so-called mean force Gibbs (MFG) state. The MFG state is obtained by integrating out the bath degrees of freedom for the Gibbs state of the total Hamiltonian. We explicitly show that the steady states of the Lindbladian QMEs are different from the MFG state. Our results indicate that manipulations of the Redfield equation needed to enforce complete positivity of a QME drives its steady state away from the MFG state. We also find that, in the high-temperature regime, both the steady states of the Lindbladian QMEs and MFG state reduce to the same Gibbs state of a system Hamiltonian under certain conditions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.