Searching for Lindbladians obeying local conservation laws and showing thermalization (2301.02146v2)
Abstract: We investigate the possibility of a Markovian quantum master equation (QME) that consistently describes a finite-dimensional system, a part of which is weakly coupled to a thermal bath. In order to preserve complete positivity and trace, such a QME must be of Lindblad form. For physical consistency, it should additionally preserve local conservation laws and be able to show thermalization. We search of Lindblad equations satisfying these additional criteria. First, we show that the microscopically derived Bloch-Redfield equation (RE) violates complete positivity unless in extremely special cases. We then prove that imposing complete positivity and demanding preservation of local conservation laws enforces the Lindblad operators and the lamb-shift Hamiltonian to be local', i.e, to be supported only on the part of the system directly coupled to the bath. We then cast the problem of findinglocal' Lindblad QME which can show thermalization into a semidefinite program (SDP). We call this the thermalization optimization problem (TOP). For given system parameters and temperature, the solution of the TOP conclusively shows whether the desired type of QME is possible up to a given precision. Whenever possible, it also outputs a form for such a QME. For a XXZ chain of few qubits, fixing a reasonably high precision, we find that such a QME is impossible over a considerably wide parameter regime when only the first qubit is coupled to the bath. Remarkably, we find that when the first two qubits are attached to the bath, such a QME becomes possible over much of the same paramater regime, including a wide range of temperatures.
- H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2006).
- Á. Rivas and S. F. Huelga, SpringerBriefs in Physics (2012).
- H. Carmichael, Statistical Methods in Quantum Optics 1. Master Equations and Fokker–Planck Equations (Springer-Verlag Berlin Heidelberg, 2002).
- J. Watrous, The Theory of Quantum Information (Cambridge University Press, 2018).
- V. Siddhu and S. Tayur, “Five starter pieces: Quantum information science via semidefinite programs,” in Tutorials in Operations Research: Emerging and Impactful Topics in Operations (2022) Chap. 3, pp. 59–92.
- D. A. Mazziotti, Phys. Rev. Lett. 93, 213001 (2004).
- D. A. Mazziotti, Phys. Rev. Lett. 106, 083001 (2011).
- A. H. Kiilerich and K. Mølmer, Phys. Rev. A 97, 052113 (2018).
- G. Lindblad, Communications in Mathematical Physics 48, 119 (1976).
- M. B. Plenio and P. L. Knight, Rev. Mod. Phys. 70, 101 (1998).
- A. G. Redfield, IBM Journal of Research and Development 1, 19 (1957).
- F. Bloch, Phys. Rev. 105, 1206 (1957).
- R. Hartmann and W. T. Strunz, Phys. Rev. A 101, 012103 (2020).
- P. Gaspard and M. Nagaoka, The Journal of Chemical Physics 111, 5668 (1999).
- S. Gnutzmann and F. Haake, Zeitschrift für Physik B Condensed Matter 101, 263 (1996).
- R. S. Whitney, Journal of Physics A: Mathematical and Theoretical 41, 175304 (2008).
- F. Nathan and M. S. Rudner, Phys. Rev. B 102, 115109 (2020).
- H. Spohn, Rev. Mod. Phys. 52, 569 (1980).
- M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” http://cvxr.com/cvx (2014).
- D. Walls and G. J. Milburn, Quantum optics (Springer-Verlag Berlin Heidelberg, 2008).
- T. Prosen and M. Žnidarič, Journal of Statistical Mechanics: Theory and Experiment 2009, P02035 (2009).
- F. Nathan and M. S. Rudner, (2022), 10.48550/ARXIV.2206.02917.
- A. S. Trushechkin and I. V. Volovich, EPL (Europhysics Letters) 113, 30005 (2016).
- D. Davidović, Quantum 4, 326 (2020).
- E. Mozgunov and D. Lidar, Quantum 4, 227 (2020).
- M. Gerry and D. Segal, (2022), arXiv:2212.11307 .
- M. Ostilli and C. Presilla, Phys. Rev. A 95, 062112 (2017).
- J. D. Cresser and J. Anders, Phys. Rev. Lett. 127, 250601 (2021).
- V. Narasimhachar and G. Gour, Nature Communications 6 (2015).
- D. Tupkary, https://github.com/dtupkary/SearchingLindbladians (2022).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.