Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributional neural networks for electricity price forecasting (2207.02832v2)

Published 6 Jul 2022 in q-fin.ST, stat.AP, and stat.ML

Abstract: We present a novel approach to probabilistic electricity price forecasting which utilizes distributional neural networks. The model structure is based on a deep neural network that contains a so-called probability layer. The network's output is a parametric distribution with 2 (normal) or 4 (Johnson's SU) parameters. In a forecasting study involving day-ahead electricity prices in the German market, our approach significantly outperforms state-of-the-art benchmarks, including LASSO-estimated regressions and deep neural networks combined with Quantile Regression Averaging. The obtained results not only emphasize the importance of higher moments when modeling volatile electricity prices, but also -- given that probabilistic forecasting is the essence of risk management -- provide important implications for managing portfolios in the power sector.

Citations (49)

Summary

We haven't generated a summary for this paper yet.